Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559158

RESUMO

To explore new worlds we must ensure humans can survive and thrive in the space environment. Incidence of kidney stones in astronauts is a major risk factor associated with long term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in other tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to development of new countermeasures against kidney disease in astronauts and people here on Earth. Highlights: Spaceflight has a significant effect on gene expression in the kidney.Responses in the BALB/c indicate milder transcriptomic perturbations than C57BL/6J.Lipid metabolism was altered in both strains of mice.Extracellular matrix metabolism and TGF-ß signalling up in BALB/c down in C57BL/6J.Reduced gene expression of hyaluronan synthesis pathway in BALB/c but not in C57BL/6J.

2.
iScience ; 26(9): 107289, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636054

RESUMO

Following on from the NASA twins' study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA's GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research.

3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835058

RESUMO

Systemic sclerosis (SSc) is a connective tissue disorder that results in fibrosis of the skin and visceral organs. SSc-associated pulmonary fibrosis (SSc-PF) is the leading cause of death amongst SSc patients. Racial disparity is noted in SSc as African Americans (AA) have a higher frequency and severity of disease than European Americans (EA). Using RNAseq, we determined differentially expressed genes (DEGs; q < 0.1, log2FC > |0.6|) in primary pulmonary fibroblasts from SSc lungs (SScL) and normal lungs (NL) of AA and EA patients to characterize the unique transcriptomic signatures of AA-NL and AA-SScL fibroblasts using systems-level analysis. We identified 69 DEGs in "AA-NL vs. EA-NL" and 384 DEGs in "AA-SScL vs. EA-SScL" analyses, and a comparison of disease mechanisms revealed that only 7.5% of DEGs were commonly deregulated in AA and EA patients. Surprisingly, we also identified an SSc-like signature in AA-NL fibroblasts. Our data highlight differences in disease mechanisms between AA and EA SScL fibroblasts and suggest that AA-NL fibroblasts are in a "pre-fibrosis" state, poised to respond to potential fibrotic triggers. The DEGs and pathways identified in our study provide a wealth of novel targets to better understand disease mechanisms leading to racial disparity in SSc-PF and develop more effective and personalized therapies.


Assuntos
Escleroderma Sistêmico , Transcriptoma , Humanos , Pulmão/patologia , Escleroderma Sistêmico/patologia , Fibrose , Fibroblastos/metabolismo , Pele/metabolismo
4.
Sci Rep ; 13(1): 918, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650199

RESUMO

Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.


Assuntos
Hibernação , Exposição à Radiação , Torpor , Animais , Camundongos , Peixe-Zebra/genética , Fígado , Hibernação/fisiologia , Torpor/fisiologia
5.
iScience ; 25(10): 105213, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36267920

RESUMO

Human expansion in space is hampered by the physiological risks of spaceflight. The muscle and the liver are among the most affected tissues during spaceflight and their relationships in response to space exposure have never been studied. We compared the transcriptome response of liver and quadriceps from mice on NASA RR1 mission, after 37 days of exposure to spaceflight using GSEA, ORA, and sparse partial least square-differential analysis. We found that lipid metabolism is the most affected biological process between the two organs. A specific gene cluster expression pattern in the liver strongly correlated with glucose sparing and an energy-saving response affecting high energy demand process gene expression such as DNA repair, autophagy, and translation in the muscle. Our results show that impaired lipid metabolism gene expression in the liver and muscle atrophy gene expression are two paired events during spaceflight, for which dietary changes represent a possible countermeasure.

6.
iScience ; 25(9): 104868, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060057

RESUMO

In a broadening and more competitive space exploration landscape, playing at scale is necessary to obtain results. European researchers share their lessons learned on growing a research program where omics techniques can feed new knowledge, both fundamental and practical, for space exploration. Sending people to new space destinations will require interdisciplinary research centered around omics and personalized medicine, with added constraints of low-gravity and high-radiation environments.

7.
iScience ; 25(3): 103920, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35265808

RESUMO

The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include "omic" analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.

8.
Genes (Basel) ; 13(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35205253

RESUMO

Cellular senescence is a state of permanent growth arrest that arises once cells reach the limit of their proliferative capacity. It creates an inflammatory microenvironment favouring the initiation and progression of various age-related diseases, including prostate cancer. Non-coding RNAs (ncRNAs) have emerged as important regulators of cellular gene expression. Nonetheless, very little is known about the interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and how deregulation of ncRNA networks promotes cellular senescence. To investigate this, human prostate epithelial cells were cultured through different passages until senescent, and their RNA was extracted and sequenced using RNA sequencing (RNAseq) and microRNA sequencing (miRNA-seq) miRNAseq. Differential expression (DE) gene analysis was performed to compare senescent and proliferating cells with Limma, miRNA-target interactions with multiMiR, lncRNA-target interactions using TCGA data and network evaluation with miRmapper. We found that miR-335-3p, miR-543 and the lncRNAs H19 and SMIM10L2A all play central roles in the regulation of cell cycle and DNA repair processes. Expression of most genes belonging to these pathways were down-regulated by senescence. Using the concept of network centrality, we determined the top 10 miRNAs and lncRNAs, with miR-335-3p and H19 identified as the biggest hubs for miRNAs and lncRNA respectively. These ncRNAs regulate key genes belonging to pathways involved in cell senescence and prostate cancer demonstrating their central role in these processes and opening the possibility for their use as biomarkers or therapeutic targets to mitigate against prostate ageing and carcinogenesis.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Ciclo Celular/genética , Reparo do DNA/genética , Redes Reguladoras de Genes , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA não Traduzido , Microambiente Tumoral
9.
Ann Rheum Dis ; 81(2): 268-277, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750102

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS: We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS: Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS: Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.


Assuntos
Fibroblastos/patologia , Regulação da Expressão Gênica/fisiologia , Fator 4 Semelhante a Kruppel/metabolismo , Escleroderma Sistêmico , Pele/patologia , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel/genética , MicroRNAs/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/metabolismo , Proteínas com Domínio T/metabolismo , Fator de Transcrição AP-2/metabolismo , Transcriptoma
10.
Front Immunol ; 12: 745308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912333

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and excessive fibrosis of the skin and internal organs. To this day, no effective treatments to prevent the progression of fibrosis exist, and SSc patients have disabilities and reduced life expectancy. The need to better understand pathways that drive SSc and to find therapeutic targets is urgent. RNA sequencing data from SSc dermal fibroblasts suggested that melanin-concentrating hormone receptor 1 (MCHR1), one of the G protein-coupled receptors regulating emotion and energy metabolism, is abnormally deregulated in SSc. Platelet-derived growth factor (PDGF)-BB stimulation upregulated MCHR1 mRNA and protein levels in normal human dermal fibroblasts (NHDF), and MCHR1 silencing prevented the PDGF-BB-induced expression of the profibrotic factors transforming growth factor beta 1 (TGFß1) and connective tissue growth factor (CTGF). PDGF-BB bound MCHR1 in membrane fractions of NHDF, and the binding was confirmed using surface plasmon resonance (SPR). MCHR1 inhibition blocked PDGF-BB modulation of intracellular cyclic adenosine monophosphate (cAMP). MCHR1 silencing in NHDF reduced PDGF-BB signaling. In summary, MCHR1 promoted the fibrotic response in NHDF through modulation of TGFß1 and CTGF production, intracellular cAMP levels, and PDGF-BB-induced signaling pathways, suggesting that MCHR1 plays an important role in mediating the response to PDGF-BB and in the pathogenesis of SSc. Inhibition of MCHR1 should be considered as a novel therapeutic strategy in SSc-associated fibrosis.


Assuntos
Fibroblastos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Somatostatina/metabolismo , Escleroderma Sistêmico/metabolismo , Fibroblastos/patologia , Humanos , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/patologia
11.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680291

RESUMO

An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins.

12.
Expert Rev Mol Diagn ; 21(12): 1257-1271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34666586

RESUMO

INTRODUCTION: Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED: Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION: PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Etnicidade/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , RNA Longo não Codificante/genética
13.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502375

RESUMO

Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ausência de Peso/efeitos adversos , Animais , Caenorhabditis elegans , Ritmo Circadiano/fisiologia , Bases de Dados Genéticas , Drosophila melanogaster , Meio Ambiente Extraterreno , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Elevação dos Membros Posteriores , Camundongos , Modelos Animais , Voo Espacial , Estresse Fisiológico/fisiologia , Transcriptoma/genética
14.
Sci Rep ; 11(1): 11452, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075076

RESUMO

Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-ß receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.


Assuntos
Raios gama/efeitos adversos , Hematopoese/imunologia , Hematopoese/efeitos da radiação , Elevação dos Membros Posteriores , Transdução de Sinais/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Camundongos
15.
iScience ; 24(4): 102361, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870146

RESUMO

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

16.
Cells ; 10(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920039

RESUMO

The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.


Assuntos
Exposição à Radiação , Torpor/fisiologia , Peixe-Zebra/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Relação Dose-Resposta à Radiação , Degradação Associada com o Retículo Endoplasmático/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Redes Reguladoras de Genes/efeitos da radiação , Melatonina/farmacologia , Modelos Animais , Fosforilação Oxidativa/efeitos da radiação , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Análise de Sobrevida , Temperatura , Transcriptoma/genética , Transcriptoma/efeitos da radiação , Peixe-Zebra/genética
17.
Genes (Basel) ; 12(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498390

RESUMO

The etiology and reasons underlying the ethnic disparities in systemic sclerosis (SSc) remain unknown. African Americans are disproportionally affected by SSc and yet are underrepresented in research. The aim of this study was to comprehensively investigate the association of DNA methylation levels with SSc in dermal fibroblasts from patients of African ancestry. Reduced representation bisulfite sequencing (RRBS) was performed on primary dermal fibroblasts from 15 SSc patients and 15 controls of African ancestry, and over 3.8 million CpG sites were tested for differential methylation patterns between cases and controls. The dermal fibroblasts from African American patients exhibited widespread reduced DNA methylation. Differentially methylated CpG sites were most enriched in introns and intergenic regions while depleted in 5' UTR, promoters, and CpG islands. Seventeen genes and eleven promoters showed significant differential methylation, mostly in non-coding RNA genes and pseudogenes. Gene set enrichment analysis (GSEA) and gene ontology (GO) analyses revealed an enrichment of pathways related to interferon signaling and mesenchymal differentiation. The hypomethylation of DLX5 and TMEM140 was accompanied by these genes' overexpression in patients but underexpression for lncRNA MGC12916. These data show that differential methylation occurs in dermal fibroblasts from African American patients with SSc and identifies novel coding and non-coding genes.


Assuntos
Negro ou Afro-Americano/genética , Metilação de DNA , Epigênese Genética , Fibroblastos/metabolismo , Escleroderma Sistêmico/genética , Biologia Computacional/métodos , Ilhas de CpG , Perfilação da Expressão Gênica , Ontologia Genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Regiões Promotoras Genéticas
19.
Cell ; 183(5): 1185-1201.e20, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242417

RESUMO

Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.


Assuntos
Genômica , Mitocôndrias/patologia , Voo Espacial , Estresse Fisiológico , Animais , Ritmo Circadiano , Matriz Extracelular/metabolismo , Humanos , Imunidade Inata , Metabolismo dos Lipídeos , Análise do Fluxo Metabólico , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculos/imunologia , Especificidade de Órgãos , Olfato/fisiologia
20.
BMC Bioinformatics ; 21(1): 432, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008309

RESUMO

BACKGROUND: In systems biology, it is of great interest to identify previously unreported associations between genes. Recently, biomedical literature has been considered as a valuable resource for this purpose. While classical clustering algorithms have popularly been used to investigate associations among genes, they are not tuned for the literature mining data and are also based on strong assumptions, which are often violated in this type of data. For example, these approaches often assume homogeneity and independence among observations. However, these assumptions are often violated due to both redundancies in functional descriptions and biological functions shared among genes. Latent block models can be alternatives in this case but they also often show suboptimal performances, especially when signals are weak. In addition, they do not allow to utilize valuable prior biological knowledge, such as those available in existing databases. RESULTS: In order to address these limitations, here we propose PALMER, a constrained latent block model that allows to identify indirect relationships among genes based on the biomedical literature mining data. By automatically associating relevant Gene Ontology terms, PALMER facilitates biological interpretation of novel findings without laborious downstream analyses. PALMER also allows researchers to utilize prior biological knowledge about known gene-pathway relationships to guide identification of gene-gene associations. We evaluated PALMER with simulation studies and applications to studies of pathway-modulating genes relevant to cancer signaling pathways, while utilizing biological pathway annotations available in the KEGG database as prior knowledge. CONCLUSIONS: We showed that PALMER outperforms traditional latent block models and it provides reliable identification of novel gene-gene associations by utilizing prior biological knowledge, especially when signals are weak in the biomedical literature mining dataset. We believe that PALMER and its relevant user-friendly software will be powerful tools that can be used to improve existing pathway annotations and identify novel pathway-modulating genes.


Assuntos
Algoritmos , Mineração de Dados , Modelos Teóricos , Anotação de Sequência Molecular , Publicações , Simulação por Computador , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Família Multigênica , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...